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in Underwater Communications 
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Abstract-One of the main obstacles to reliable underwater acoustic 
communications is the relatively complex and unstable behavior of the 
ocean channel. The channel equalization method, that can estimate and 
track this complex and rapidly varying ocean response, may lead to 
reliable data communications at high rates which utilize fully the avail- 
able bandwidth. Unfortunately, standardized equalization techniques 
fail in this environment. In this paper we derive methods for joint 
ocean-channel estimation and data recovery, using optimal, Maximum 
Likelihood (ML) estimation criterion. The resulting ML problems may 
be complex; thus we will use iterative algorithms; e.g., the Expectation- 
Maximization (EM) algorithm. The different methods correspond to 
different assumptions about the ocean channel. The theoretical deriva- 
tion of these methods as well as preliminary results on a simulated ocean 
data experiments are presented. 

I. INTRODUCTION 

HE underwater acoustic channel is probably one of the most T complicated environments for data communications. The 
unique characteristics of this channel, which include fading, 
extended multipath and refraction, fluctuation and unstable be- 
havior, etc., preclude direct application of standard communica- 
tion techniques. Past efforts to design a reliable underwater 
acoustic link largely by integrating methods developed for other 
channels are summarized in a few review papers (e.g., [ l] ,  [2]). 

In most communications channels the limitation on the rate is 
largely due to the bandwidth or the signal-to-noise ratio (SNR). 
However, if we consider, for example, the short-range acoustic 
channel, despite the fact that its bandwidth is about 20 kHz and 
the fact that it has usually a reasonable SNR, the reliable data 
rate achieved in state-of-the-art underwater modems is about 1 
kb/s. We note that in some other communications systems, 
bandwidth expansion figures to 4 to 6 (i.e., reliable data rates of 
4 to 6 b per available bandwidth Hz) have been achieved! 

As it seems now, the available underwater communications 
systems operate at rates far below the capacity of that channel. 
The recent developments in bandwidth-efficient modulation and 
coding techniques (e.g., Trellis coding, [3], [4]) have led to 
reliable high rates in telephone and satellite channels, which 
approach the capacity of these channels. In the ocean channel, 
similar methods are just in their initial stages (e.g., [5]) and their 
performance has not been tested extensively yet. While better 
modulation techniques will certainly improve the performance of 
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underwater acoustic communications, the crucial factor, in at- 
tempts to achieve the capacity, will be the equalization or 
compensation of the fluctuating ocean channel behavior. Without 
channel equalization, not only will the modern and efficient 
trellis coding techniques break down, but other signaling tech- 
niques, especially those based on phase coherent detection, 
cannot operate reliably. 

Equalization for channel response is an extensively studied 
problem. Summary and review of standard equalization tech- 
niques can be found in [6]-[8, chaps. 6 and 71. In general, 
equalization techniques belong to one of the following two 
categories: The techniques of the first category try to cancel the 
effects of the channel by deconvolving the received signal; i.e., 
by passing it through a filter whose response is the inverse of the 
channel impulse response. These techniques, sometimes known 
as inverse or zero-forcing filters, [9], will minimize the peak 
distortion between the transmitted and equalized signal. How- 
ever, as is the case with any inverse filtering technique, in the 
presence of even a small amount of additive noise the perfor- 
mance of these equalizers is poor, since they amplify the noise 
considerably; when the channel has spectral nulls, the SNR after 
equalization will go to zero! Thus despite some recent interesting 
developments in blind deconvolution (e.g., [lo]), we will not 
consider the application of techniques from this category in 
reliable underwater equalization and communications systems. 

The techniques of the second category use as a criterion the 
mean square error between the transmitted signal and equalized 
signal. This criterion leads to a “matched filter” structure of the 
equalizer. The various equalization methods differ in their as- 
sumptions about the signals, the channel, and about what is 
known a priori about the data and channel. For cases where the 
transmitted data or input signal is known, a variety of least- 
squares algorithms have been derived for the channel estimation; 
e.g., the gradient and LMS methods I l l ] ,  and the Recursive 
Least Squares (RLS) or Kalman method [12], [13], and their 
implementation via lattice filters [14], [ 151, etc. The complemen- 
tary problem of effective equalization (i.e., data recovery from 
the signal that has Inter-Symbol-Interference (19) due to the 
channel when the channel structure is given) was solved in [16] 
by the Maximum-Likelihood-Sequence-Estimation (MLSE) ap- 
proach, implemented by using the Viterbi algorithm. Attempts 
for joint channel and data estimation were made by using the 
class of Decision Feedback Equalizers (DFE), [ 171-[ 191; incor- 
porating DFE with MLSE has been performed in 1201. These 
techniques are the closest to our approach. As will be discussed 
in detail in Section 11, the ocean acoustic channel is more 
complex and changes more rapidly than virtually any other 
communication channel; thus the standard equalization tech- 
niques, mentioned above, are inadequate in this environment. 
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The approach and directions we suggest for equalization in 
underwater acoustic communications are based on methods for 
joint channel estimation and data recovery. The estimation crite- 
rion will be the optimal Maximum-Likelihood (ML) objective 
function. This joint estimation will be performed under a variety 
of assumptions or mathematical models of the commun- 
ication/equalization problem and Ocean channel. The statistical 
ML problems resulting from the mathematical modeling are 
often complicated and usually do not have an analytic closed-form 
solution. Thus in most cases we have suggested iterative algo- 
rithms. 

A common feature of the suggested iterative algorithms for 
joint channel estimation and data recovery is an alternation 
between channel estimation, assuming that the data is known, 
and data recovery, assuming that the channel is known. For 
example, given the channel impulse response which is equivalent 
to knowing the IS1 structure, we can recover the information bits 
using the MLSE technique, implemented via a Viterbi algo- 
rithm, mentioned above. On the other hand, given the data, the 
channel impulse response can be estimated-either in closed 
form for linear cases, or iteratively for cases where the parame- 
ters of this response enters in a nonlinear way. One of the 
powerful algorithms for iterative ML is the Expectation-Maximi- 
zation (EM) algorithm [21], [22]. This iterative method will be 
incorporated in one of our equalization algorithms. 

The algorithms we suggest take into account the ocean chan- 
nel behavior by operating on blocks, whose size is determined 
by the time window in which we can assume that the channel is 
stable. Thus we are ready to cope with situations in which, due 
to fading and fluctuations, the channel has been changed com- 
pletely and abruptly between blocks. In further research we plan 
to derive adaptive versions of our algorithms which will track 
the channel variations in a nonblock fashion. 

The paper is organized as follows: In the next section we will 
discuss in detail underwater ocean acoustic channels, the special 
equalization problems that characterize these channels, and the 
inadequacy of the standard equalization methods in this environ- 
ment. In Section 111 we present in detail the mathematical 
models, formulate the statistical estimation problems, and pre- 
sent the background for our algorithm derivation. The suggested 
equalization methods are given in Section IV; these methods 
estimate jointly the channel response and data and provide the 
new approach and directions. These equalization algorithms are 
tested using simulated data, and these experimental results are 
presented in Section V. A summary and suggestions for further 
research direction will conclude the paper. 

11. THE OCEAN CHANNEL 

A .  Relevant Channel Characteristics 

Underwater acoustic communication is limited primarily by 
the dispersion and rapid time-variant behavior of the ocean 
channel, which is a complex waveguide with a number of 
physical parameters causing strong fluctuation of the received 
acoustic waveforms. The theory of wave propagation in random 
media has contributed a number of insights into underwater 
acoustic propagation, and excellent summary articles on long- 
and short-range acoustic fluctuations appear; e.g., [23], [24]. A 
distinct characteristic of the oceanic waveguide is the long and 
complex multipath structure. The relatively slow speed of sound 
in the water results in extended multipath structures from a given 
waveguide geometry and long reverberation times encountered. 

In the short-range channel, the multipath is largely due to 
reflections from large scatterers and boundary interactions. 

In many cases the channel impulse response h ( t )  can be 
modeled as 

and this response may, in general, be both time and frequency 
varying. Each path arrival s ( t ,  f) = a, ( t  - Ti,  f) 

T i , f ) + B i ( t ,  f )  undergoes frequency-dependent amplitude, 
phase, and time-delay fluctuations. If these were known, the 
optimal communication receiver would subtract the channel- 
caused effects before processing the received waveforms. In 
most cases the fluctuations are unknown; the system can estimate 
them and use the estimates to improve received signal fidelity. 
Alternately, the system can estimate the stochastic properties of 
the fluctuations and operate in the presence of random fluctua- 
tions whose moments are known. Combinations of the two 
approaches are implemented, for instance, in partly coherent 
methods where phase fluctuations are treated as random, but 
amplitude and delay are estimated as deterministic quantities. 

A number of solutions for tracking channel behavior is avail- 
able, including phase, amplitude, and time-delay tracking [25]. 
In this work we concentrate on estimating the impulse response, 
assuming a linear channel model; e.g., equalizing the time delay 
and amplitude distribution of the ocean multipath. While phase 
fluctuation can also be compensated with the proposed method, 
in practice, coherent signaling over the ocean channel is quite 
difficult and generally implemented only for the vertical path 
[25] - [27]. 

The joint channel and data estimator finds, for example, the 
path amplitudes ai and relative delay times 7;  along with the 
ML data sequence. The path amplitude fluctuations arise from 
single-path effects such as turbulence, surface, and internal wave 
fields as well as from multipath interference [25]. Both effects 
are well understood and the fluctuation spectra are available for 
the stationary source-receiver [23], [24]. Multipath delay dis- 
tribution arises from the waveguide characteristics and scatterer 
locations within the waveguide [28]. For the short-range chan- 
nels, multipath stability is determined largely by the distribution 
and motion of nearby scatterers. 

We now examine, in some detail, the impulse response, 
especially the channel amplitude and multipath delay characteris- 
tics, of three underwater acoustic channels. These channels are a 
deep-water vertical path and two shallow-water examples illus- 
trating the extremes of multipath delay distribution and path 
amplitude fluctuation. 

1) Short-Range Vertical Channel: The short-range vertical 
channel used for communication with bottom instruments and 
vehicles exhibits rather mild amplitude and phase fluctuations, 
and a number of modulation and equalization methods developed 
for telephone channels are directly applicable. The received 
signal typically consists of a direct arrival and surface reflection. 
The second path is easily eliminated with a directional receiver, 
whose additional benefit is the rejection of surface-generated 
noise. At frequencies of 10-50 kHz typically used for communi- 
cation over the vertical path, ambient noise is largely generated 
near the surface, particularly near a ship or other marine struc- 
ture. A directional receiver hydrophone can frequently yield a 
40-dB SNR improvement, and angular discrimination is often 
implemented in practice. Under these conditions, adaptive equal- 
ization of surface multipath is not worthwhile because of addi- 
tional surface noise introduced into the receiver. 
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In this channel, sometimes, a bottom-induced multipath can 
arise from bottom-mounted or near-bottom transmitters. It is not 
separable on the surface with angle of arrival processing and can 
dominate the signal quality at times; for example, when explor- 
ing and photographing an underwater wreck. Again, multipath 
can be avoided with directional transducers, but this surface-sta- 
tion positioning can become a problem. Fortunately, the multi- 
path in this case is limited to a few specular arrivals and the 
multipath dynamics are governed by geometric positioning be- 
tween the bottom transmitter and reflecting object. 

2) Short-Range Shallow Water Horizontal Channel: The 
1-10-km shallow water waveguides are among the most dy- 
namic multipath channels in use. From channel measurements 
made in relatively calm water, collected over a 3-km channel 
approximately 15-m deep, the following features were observed: 

A multipath channel in which the first arrivals show evi- 
dence of through-bottom propagation. 
Several independent amplitude and delay fluctuation mecha- 
nisms are seen in the data. Path appearance (emergence 
from a fade), discrete time-delay shift, path splitting, and 
interference of bottom and water-propagating arrivals are 
evident. 
This channel is not severely Doppler spread, but the fluc- 
tuation behavior of individual arrivals causes tracking dif- 
ficulties for classical equalization methods. 

We believe that these features primarily show the effects of large 
stationary scatterers and bottom/surface interaction in that 
channel. 

The short-range shallow-water channel can show a totally 
different behavior. In measurements made over a 700-m range in 
Woods Hole Harbor in a highly turbulent and high current 
environment, we have seen the effects of mid-column turbulence 
and diffise moving scatterers. In this case the validity of the 
discrete multipath model is questionable, as no discrete paths are 
evident in the data. Sometimes a low-frequency fluctuation of the 
primary arrivals can be caused by the dominant turbulence scale 
in the propagation path. Strong spatial dependence of the re- 
ceived acoustic field is observed under these circumstances [29]. 
The acoustic intensity distribution resembles the distribution of 
light intensity at the bottom of a disturbed swimming pool, and 
strong temporal behavior observed at a point is a result of the 
time-variant refraction properties of the medium. Under strong 
sound-focusing conditions, spatial diversity processing is a 
promising telemetry method. 

B. Equalizer Performance Requirements for  Ocean 
Acoustic Channels 

A number of adaptive channel estimators and equalizers were 
successfully implemented on the ocean channel [30], [27], [31], 
[32]. However, the fluctuation rate of many ocean channels, 
particularly the shallow-water horizontal waveguide, precludes 
equalization and multipath processing with algorithms developed 
for more benign channels. Classical methods such as LMS and 
RLS adaptive equalizers typically require an initial training 
sequence and either periodic updates or decision feedback 171, 
[33]. An additional complication is the difficulty of synchroniz- 
ing to a channel without a well-defined first or principal arrival. 
The resultant synchronizer jitter is exhibited as additional multi- 
path fluctuation, further degrading equalizer performance. 

The focusing behavior of ocean channels often requires spatial 
diversity receiver implementations [29]. The channel impulse 
response of each diversity path differs markedly, and a given 

channel may have high data quality for only a few seconds. 
Independent path equalizers are required which can operate 
without training sequences in the presence of rapidly time-variant 
channels and relatively poor data quality. This work discusses an 
equalizer formulation for the ocean acoustic channels of this 
type. The algorithm formulation was driven by the following 
constraints not commonly found on other channels: 

The discrete multipath model is applicable in many situa- 
tions of interest, but a significant percentage of the channels 
of interest cannot be modeled by discrete multipath ar- 
rivals. 
Channel fluctuation rates may approach the system baud 
rate; i.e., the channel can change significantly during a few 
frames. 
Channel fluctuations arising from energy focusing and scat- 
tering cause frequent signal fades and data degradations. 
The system must recover from fades without recourse to 
training sequences. 
The ocean acoustic channel bandwidth is severely con- 
strained, and operation without dedicated channel probes is 
preferable. 
Computational complexity is not a severe constraint. The 
desired data rates over the 10-km shallow-water channel 
are on the order of 10 kb/s, and computational engines 
approaching 1 gigaflop are realizable. 

These requirements and the shortcomings of present equalization 
methods for time-variant channels have motivated our work on 
joint data and channel estimators. 

111. MATHEMATICAL MODELS AND BACKGROUND 
In this section we present the common mathematical models 

for communication in ISI channels and formulate the problem of 
joint channel estimation and data recovery as a statistical com- 
posite hypothesis problem. We then describe how to solve each 
part of the problem separately; i.e., methods for data recovery 
when the channel IS1 structure is known, and methods for 
channel estimation when the data is known. The suggested 
algorithms, which will be described in the following section, 
will iterate between the partial solutions of the original problem. 
Thus we will also describe briefly some aspects of iterative 
algorithms for Maximum Likelihood (ML) estimation, and, more 
specifically, the Expectation-Maximization (EM) algorithm. 

A .  Problem Description 
The communication problem in any channel characterized by 

inter-symbol interference (ISI) is characterized, mathematically, 
as follows: Let the transmitted symbols be denoted _a; for the 
case where n symbols were transmitted, _a = a. * * a,- I .  The 
modulation procedure generates a signal, s( t ;  _a): 

where U ,  is the carrier frequency, and s,(t; a) is a complex 
pulse signal; i.e., it is equal to zero outside the interval [0, TI,  
whose shape depends on the modulation. For signaling tech- 
niques such as PSK, QAM, etc., this pulse signal has a constant 
complex value (that depends on a,) throughout the pulse period, 
while it is ejai'Awr for FSK modulation. In the analysis, 
throughout the rest of the paper we will consider only the 
complex demodulated signals; for example, the transmitted sig- 
nal will be 5( t ;  _a) = C , s p ( t  - iT; a,). 
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The modulated signals enter a channel whose impulse re- 
sponse is h( t ) .  This is the effective “base-band’’ channel re- 
sponse. Note that we assume that the channel is linear and 
time-invariant. As discussed above, this assumption can be valid 
in the Ocean only for some observation window of about half a 
second; this observation window will be, say, [0, nT] if n 
symbols can be transmitted while the channel is stable. We also 
assume that nonlinear effects due to demodulation, Doppler 
shift, etc., have been compensated. The impulse response h( t )  
is assumed to be causal and of finite duration; i.e., h( t )  = 0 for 
t > D ,  where D is usually of several (2a5) symbol periods. 
Now the observed signal will be 

r ( t )  = B ( t ; g ) * h ( t )  + n ( t )  (3) 

where n( t )  is assumed to be a white (in the channel bandwidth) 
Gaussian signal. Clearly, due to the channel, the observed signal 
at each time point is composed of contributions from the previ- 
ous symbols-the IS1 problem. 

The task we encounter is to recover the information bits from 
the observed signal despite the channel IS1 effects. It is well 
known, and will be further described below, that if we know the 
channel impulse response, we can find the best (in terms of 
minimum probability of error) information bit sequence. On the 
other hand, if a sequence of information bits is known, we face a 
channel-estimation problem, where the input to the channel is 
given. The solution for this problem, under the various assump- 
tions, will also be further described below. Sometimes known 
preamble sequences are used, especially for this task; however, 
in the ocean environment where the channel is varying rapidly, 
we may waste our available bandwidth if we transmit known 
information bits for estimating the channel in the rate that the 
channel is varying. Thus the algorithms we propose in this paper 
will jointly estimate the channel response and information bits. 

In a more formal setting the problem we encounter is as 
follows: Assuming that the a priori probability of the informa- 
tion bits is uniform, and due to the fact that the noise is white 
and Gaussian, we are looking for the symbol sequence and the 
channel that solve: 

(4) 

where the integration is over the time window for which the 
channel is stable, and B( t ;  g)* h( t )  = /Fh( T)B( t - 7 ;  _a) d ~ .  
Note that for a fixed h( . )  the minimization above is equivalent 
to the Likelihood Ration Test (LRT) for the information bits, 
and since we minimize over h( .), we perform the Generalized 
LRT . 

B. Extraction of the Information Symbols in a Known 
ISI Channel 

We will now briefly present the solution to the information 
bits extraction problem, given the channel impulse response; 
i.e., the LRT solution. Within this solution we will find out, 
unsurprisingly , that there are sufficient statistics extracted at the 
rate of the information symbols; i.e., every T seconds; thus we 
do not need to process the entire continuous-time received 
signal. This set of measurements is the output of a whitened 
matched filter, sampled at the symbol rate. Unfortunately, for 
estimating both the channel and data this set of measurements is 
not sufficient, and we have to process and keep the entire 
observed signal r( t ) .  

The goal function M ( g )  for estimating the information bits is 

(4), which is a function only of the information symbols by the 
assumption that the channel is ‘known. Now, since $(t;  g) = 
Cisp( t  - iT;  a;) ,  we get: 

. (/ h*(t - 7 ) h ( t  - 7‘)  dt d7 d7’ 1 
and we have to minimize ( 5 )  with respect to a. 

Looking on ( S ) ,  the integral of I r( t )  I * is independent of the 
information sequence and the third term does not include the 
observed signal. From the second term above we notice that we 
have to pass the observed signal r ( t )  through a filter whose 
impulse response is h*(t)  (i.e., a filter matched to the channel 
impulse response) and then to integrate it independently, every 
symbol period, against the various possible pulse signals. Thus 
if the symbol alpha-bet size is A ,  we get A numbers for each 
symbol duration, and these numbers form the set of sufficient 
statistics for the extraction of the information sequence. Note 
that for PAM, PSK, or QAM modulation where s,(f; a)  has a 
constant value a throughout the symbol duration, the sufficient 
statistics are composed of a single value for each symbol period. 

It is easy to see that the third term, which depends on the 
information sequence, although it is independent of the observa- 
tions and thus can be calculated in advance, depends only on the 
iutocorrelation of the channel impulse response; i.e., on: 

R ( u )  = ] h ( t ) h ( t  - U )  dt 

and by our assumptions R ( u )  = 0 for 1 U 1 > D .  The minimiza- 
tion of (3, which in principle depends on the entire data 
sequence, would have required an exponentially complex ex- 
haustive search over all possible sequences. The fact that the 
channel impulse response autocorrelation function is nonzero 
only over the interval [ - D ,  D ] ,  which implies that locally 
the goal function depends only on a few symbols, has led to a 
more efficient computational method based on the dynamic- 
programming Viterbi algorithm. This algorithm, proposed in 
[16], is described in the version we use later in the paper, in 
Appendix A. 

The analysis of the performance in terms of bit error probabil- 
ity when the channel is known and the Viterbi algorithm for 
equalization is used can be found in [8, chap. 61, following [16]. 
This analysis is similar to the performance analysis done for 
convolutional codes; indeed, the IS1 effect is sometimes de- 
scribed as a channel-induced convolutional coding whose rate is 
1. We note, however, that despite this “coding,” the bit error 
performance when IS1 exists is usually poorer then when no IS1 
exists, even when the IS1 structure is known, since the channel 
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destroys the optimal design characteristics such as orthogonality 
that the original transmitted pulse signals may have had. 

C .  Maximum-Likelihood Channel Estimation - Known 
Data 

In several realistic communication situations the transmitted 
information bits may be available to the receiver, at least for 
some portion of the communication session. For example, the 
transmitter and receiver may agree on a known bit sequence to 
be transmitted every predefined time period, or they may set a 
special probe channel in which known data sequences will be 
transmitted. In both cases, the goal is to use the known informa- 
tion symbols which define the input to the channel to estimate 
the channel characteristics. In the channel equalizer context, 
often the known data sequence can be the information symbols 
just extracted, as in decision-directed and decision-feedback 
equalization, or, as is the case in our alternating algorithm, the 
known sequence is the data extracted in the previous iteration 
and used for better estimating the channel response. 

Under our assumption that the additive noise is white and 
Gaussian, the ML estimation of the impulse response minimizes 
the goal function given by (4), which is a function of the 
channel-impulse response, since the data sequence g is assumed 
to be known. Explicitly, for known data we have to find the 
minimum of 

I )  No Constraints Case: If no constraints are imposed on 
h( a), the minimization problem above is a linear least-squares 
problem. The solution A( e )  must satisfy the equation: 

l r o h (  T )  ([ s"( t - 7 ) 6 (  t - U )  dt d7 1 
= JI r( t )s"*(t  - u )  dt (7) 

where we have omitted the dependency on _a, since it is !ssumed 
to be fixed and known. The explicit solution of (6) for h( e )  can 
be given using the reciprocal Kernel formulation (see [34, chap. 

For clarity and for further derivations, we will present the 
approximate solution in which we assume that the observed 
signals are discrete, but sampled fine enough (in the channel 
bandwidth) (i.e., the observed signals are given at time points 
(0, * A ,  f 2 A ,  112 W is much finer than, 
for example, the symbol period T .  With this approximation the 
integration above becomes a summation, the observed signals 
can be represented as vectors, e.g,. I = [ 
r(O), * e ,  r(nA),  * I T ,  and the convolution operator is approx- 
imated by 

41). 

* }), and that A 

, r( - nA), . * 

s ( t ) * h ( t )  = [ h ( r ) s ( t - r ) d ~ = S . h  

where S is a Toeplitz matrix, Si,  = s(iA - j A ) ,  and h is a 
vector that represents the impulse response. The channel estima- 
tion problem becomes the least-squares problem: 

where " t' ' denotes the conjugate-transpose operation, and 
PINV ( A )  denotes the pseudo-inverse of A .  The formula with 
the pseudo-inverse can be used even when StS is singular. 

2) Parametric Channel Models: In many situations of inter- 
est we have some knowledge about the channel to be estimated, 
in terms of a parametric modeling of the channel impulse 
response. In this channel we will denote the channel impulse 
response h(t;  e) ,  and the channel estimation problem is reduced 
to the problem of estimating the parameters e. One example of 
such parametric modeling is the multipath channel, in which the 
impulse response can be written as 

P 

k =  1 
h ( t )  = a ,q t  - 4.  (9) 

This model has been justified above for the ocean channel. 
Assuming that the number of paths is known, say, from classical 
acoustic theory in the ocean channel, the unknown parameters 
are the path delays { 7 k }  and the path attenuation { a k } ,  which 
can be complex to model phase shifts. 

Incorporating this parametric knowledge in the channel esti- 
mation procedure can be very important. Not only will it 
improve the channel estimate for cases when the model indeed 
holds, but it will also lead to a smaller error probability of the 
extracted information bits when we jointly estimate the channel 
and the data. Intuitively, when there are no constraints on the 
channel impulse response, we increase the chance to find a 
wrong data sequence, which together with an erroneous channel 
response will lead to a small total square error. 

The channel estimation problem can be written as the follow- 
ing nonlinear least-squares problem: 

min/ I r ( t )  - I D  h ( 7 ; e ) Z ( t  - 7 ; g )  d7 d t .  (10) 

Unfortunately, this minimization can be highly complicated, 
even for a known data sequence. Nonlinear least-squares prob- 
lems can be solved by standard iterative algorithms, e.g., the 
Gauss-Newton algorithm, or other nonlinear optimization tech- 
niques (see [35], [36]). However, due to the fact that we 
maximize a likelihood function, we can utilize the iterative EM 
algorithm which exploits the stochastic system under considera- 
tion. This algorithm has been suggested in [21] and has been 
applied to signal-processing problems in [37], [22], and else- 
where. The multipath channel model and other composite chan- 
nels models can be considered as applications of the supexim- 
posed signal problem in [38]. The EM algorithm and its applica- 
tions to cases like the multipath channel model is presented in 
more detail in Appendix B. 

The performance of the channel estimation can be measured in 
terms of the mean square error between the true cbannel and the 
estimated one. Thus _we can consider E{ I h( t )  - h( t )  1 2 }  or its 
trace j fE{  I h ( t )  - h( t )  ( 2} dt ,  and if the cJannel i s  modeled 
parameterically, w,e can 5onsider E { @  - e)(@ - or its 
trace, tr (E{(e  - @)(e - e)T}). A lower bound can be easily 
found by calculating the Cramer-Rao lower bound for this 
Gaussian case. The lower bound for the channel parameter 
estimation error is 

e t  s = o  12 

min ( ( r  - S(g) . h(I2 where I is Fisher's information matrix, which for our problem 
its { U }  th element is h 

whose (unconstrained) solution is 

6 = (S(g)tS(g))-'S(g)' * 1 = PINV ( S ( _ a ) )  * I  (8) 



FEDER AND CATIPOVIC: ALGORITHMS FOR JOINT CHANNEL ESTIMATION AND DATA RECOVERY 41 

and y ( t )  = h(t)*F(t; _a) is the channel response to the input 
F( t ; g). Substituting the specific parametric model will lead to an 
explicit bound. 

We note that the Cramer-Rao bound represents local effects 
on the estimation error. In our case we expect a large ambiguity 
error, especially since the symbols are modulated and we get 
signals whose structure is periodic; thus the bound is not tight 
and the square error is larger. The observation above explains 
the possible difficulties due to ambiguity, etc., which arise for 
different choices of the signaling techniques. As we have en- 
countered in our experiments, these difficulties indeed exist in 
our equalization techniques that are based on joint data and 
channel estimation. However, this is an inherent problem of the 
channel estimation problem and not necessarily a fault of our 
suggested equalization algorithms; the ambiguity can only be 
fixed by using different signaling. 

IV. ALGORITHMS FOR JOINT CHANNEL ESTIMATION AND 

DATA RECOVERY 
In this section we present methods for jointly finding the 

information bit sequence and channel impulse response; i.e., a 
solution to the problem presented formally by (4). As was 
implied above, a common "theme" of our suggested algorithms 
is the alternation between two simpler optimization problems; 
namely, extracting the data assuming that the channel is given, 
and estimating the channel assuming that the data is known. 
More specifically, this "coordinate-search'' algorithm is: 

1) set n = 0 and make an initial estimate of the channel 

2) Based upon h(")(t) (or @(")), find the MLSE of the data 

3) Based upon @") (or F(t; $"))), update the channel esti- 

4) Set n = n + 1 and return to step 2 .  Continue until the 

h'c)(t) ,  (or it: parameter; i'")), 
sequence #"), 

mate i ( "+ ' ) ( t )  (or its parameters i ( ' + l ) ) ,  

algorithm converges by some criterion. 

By its nature the algorithm increases the likelihood, or decreases 
the square error, in each iteration. Under mild conditions it also 
converges to a stationary point of the goal function (which may 
unfortunately be a local minimum). 

We will present below specific algorithms of the structure 
above which were designed by having the specific ocean-channel 
characteristics in mind. The data is processed in blocks, whose 
size fits our assumptions for the time period in which the channel 
is stable; i.e., no more than half a second. Thus we are ready to 
cope with situations in which the channel has been changed 
completely and abruptly between blocks, Block "tailoring" 
methods such as block overlapping and using previous block 
estimation as the next block initial condition will also be men- 
tioned. Although other variations and scenarios can be thought 
of, we present the following specific algorithms: 

In Section IV-A we deal with parametric channel models, 
and more specifically, the multipath channel model. The 
nonlinear least-squares problem needed for step 3 above is 
implemented using the EM algorithm. 
In Section IV-B we deal with the case where the channel's 
impulse response is finite but otherwise unconstrained, and 
thus it can be found as a solution of a linear least-squares 
problem. As will be seen, we will be able to combine steps 
2 and 3 above and get a closed-form solution for the 
information bit-extraction problem. 

A.  The Parametric Multipath Channel Model 
Joint channel and data estimation, when a parametric multi- 

path model for the channel is assumed, is now considered. 
Under this modeling the channel impulse response is given by 

P 

k =  I 

The motivation and validity of this model have been presented 
above. With this channel model, the transmitted complex signal 
F(t; _a) is observed at the receiver as 

r ( t )  = 5 ( Y k ? ( f  - 7 k ; )  + n(f). (14) 
k =  1 

We assume that the multipath order is known. A typical number 
for the ocean channel is 4. 

Following the generic algorithm described above, we start 
with an estimate of the parameters { aIp'} and { TIP)}. At each 
iteration having the current estimate, we can find the data 
sequence: 

_a'") = arg min r ( t )  - ay(kn)F(t - $);_a)[ (15) 

using the Viterbi algorithm. Note that we have replaced the 
integral by a summation over t ,  assuming that the observed 
signal is discrete and finely sampled. In the implementation of 
the Viterbi algorithm each state si in the trellis is defined by the 
value of the current symbol a; and the values of the previous q 
symbols, where q = [ D /  TI, D is the longest delay, and T is 
the symbol period. The knowledge of the state allows us to 
calculate the metric, 

G i  1 k r l  

iT- l  I P 12 

t = ( i -  l )T k =  1 

for the ith symbol period, needed for the channel estimation. 
The next step, having the data sequence estimate, is to update 

the channel parameters. We use the EM algorithm described in 
Appendix B to solve the nonlinear least-squares problem needed 
for this update. In a specific implementation, say, only one 
iteration of the EM algorithm can be performed. This iteration 
leads to the following procedure: Define 

D 

e(  t )  = r(  t )  - a(kn)s"( t - T?) ;  _a'")) (16) 
k = l  

to be the error signal associated with the optimal path of the 
Viterbi algorithm. Generate, then, the p signals: 

where { P k }  are non-negative numbers whose sum is 1 .  The new 
estimate of the delays is given by 

and the approximation is valid when the allowable delay is small 
compared to the entire observation window or when the energy 
C,s"*(t - 7 ;  _a) is independent of 7 .  
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When we use the EM procedure in a strict way, the kth 
amplitude is the value of the cross correlation in (18) at 
the estimated delay $ + I ) .  However, we observe that the non- 
linear least-squares problem for estimating the channel parame- 
ters, i.e., 

becomes a linear least-squares problem with respect to the 
amplitudes, and thus having an estimate TP+’), the amplitude 
update will be: 

where a = [ aI, * . , a J T  is the vector of the amplitudes, R,  = 
R s ( ~ ;  _a) is a p x p correlation matrix such that ( R , ) ; ,  = 
x,s”*(t - 7;)s”(t - 7,). the vector rrs(T;  _a) is the p dimensional 
cross-correlation vector whose ith component is C t r (  t)s“*( t - 
ri), and 7 is the vector of delays. 

The algorithm is now completely specified. At each iteration, 
start with an estimate of the paths delays and amplitudes and find 
a data sequence by minimizing (15) using the Viterbi algorithm 
of Appendix A. Then find the updated delays according to (18) 
and the updated amplitudes according to (20). Initial conditions 
for delays and amplitudes can be achieved using any prior 
knowledge or other common technique; e.g., looking at the 
peaks of the signal autocorrelation. 

We note that this algorithm iterates on blocks of the observed 
data. In each such set of iterations the observed signal depends 
on the previous q = 1 DIT]  symbols in addition to the n 
symbols transmitted at the observation window. In the practical 
implementation of the algorithm, the previous D samples of the 
signals, together with an estimate of the previous q symbols, are 
used in (18) and (20) for updating the delay and amplitude 
estimates. These q symbols have already been recovered while 
the previous block has been processed, and we suggest using 
these previous recovered symbols while processing the current 
block. Other “block overlapping” methods can also be consid- 
ered and the various methods should be analyzed further. 

The algorithms presented in this section are also valid for 
other models, which can be described as “superimposed chan- 
nel” models. For example, consider the channel in which each 
different path also undergoes a different Doppler frequency shift. 
The observed signal in this case will be 

P 

k =  1 
r ( t )  = C a$(t - 7 k ;  tz)ejWk‘ + n ( t ) .  (21) 

The suggested algorithm is analogous to the algorithm presented 
above, where we have to use S( t - @)ejwk’ instead of S( t - 
T ~ )  in (16)-(18), and the optimization in (18) should be with 
respect to T and W .  

B. Closed-Form Solution for the Unconstrained Channel 
Case 

The algorithm below considers the case where no assumptions 
on the channel impulse response have been made, besides the 
fact that it is finite and its length D is known. This is the most 
general case we consider and it will lead to the most simply 
expressed solution (which may be computationally complex, 
however) for the joint channel and data estimation problem. This 
algorithm will be very powerful for cases of fast, arbitrarily 

the channel and where all the other model-dependent methods 
fail. However, the available degrees of freedom in the choice of 
the channel may result in a higher probability of error compared 
to the case where the impulse response is known. 

In deriving the method, we use, for clarity, the approximation 
in which the observations are discrete-time, sampled finely 
enough. The goal function and the joint channel and data estima- 
tion are given by 

As mentioned in Section 111-C above, when the information 
bits are known and thus S ( g )  is given, the channel estimation is 
given by (see (8)): 

which is th_e best channel for that data sequence _a. We can now 
substitute _h(_a) in (22)  and the optimal data sequence will be 
found by minimizing the resulted goal function, 

(24) 

NOW, since I - s(_a)(s(a)ts(a))-’s(_a)t is a projection oper- 
ator, it is idempotent and the optimal data sequence is found as 

In a detailed implementation of the algorithm, suppose that T 
samples are available for each symbol period, and assume that 
the observation window is n-symbol long. In this case the 
observed signal is the vector: 

* , r ( n ( T -  l ) ) ; . . , r ( n T -  1)IT 

and S ( g )  is a n T  x D Toeplitz matrix, where D is the channel 
impulse response length or effective IS1 length, such that St,  ,,(_a) 
= S(t - a; g). Note also that the multiplication S(g)t_r = y(g)  
represents the cross correlation between the transmitted and 
observed signal, and S(g)tS(_a) = R s ( g )  is the autocorrelation 
matrix of the transmitted signal. Note that although the observa- 
tion window is n-symbol long, the expression (25) depends on 
the n + q symbols [a-q - . a, . *  a,- where q is the 
smallest integer greater than D/ T .  

Computational Aspects and  Implementation Details: The 
complexity of the computation in (25) is due to two factors: 
First, the goal function depends on the entire data sequence and 
thus its minimization requires an exhaustive search, whose com- 
plexity is exponential in the sequence length. Secondly, for each 
candidate sequence we have to calculate (25), which can be 
computationally complex. We will deal with the complications 
resulted from the first factor later. 

The computation of the goal function (25) for each data 
varying channels where indeed no assumption can be made about sequence can be calculated efficiently, using the following recur- 
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sive method. As noted above, the goal function can be written as 

where we recall that y is of length D, and R ,  is a D X D 
matrix. Now, given a new set of measurements for the observa- 
tion window [ nT,  (n + l ) T  - 11 which corresponds to the new 
symbol a,,,, the new cross-correlation vector y (  * , a,, 

a,, a,,,) 
can be calculated from the previous cross correlation and previ- 
ous autocorrelation as follows: By definition, the cross-correla- 
tion vector satisfies 

a,,,) and the new autocorrelation matrix R,( * - 

( n + l ) T - l  

t = n T  
V (  * . .  ,an, . , + I )  =_v( ... 9 an) + r(t)S*(t) 

(27 1 
where S ( t )  = [$(t ) ;  - a ,  Z ( t  - D + 1 ) I T .  The autocorrelation 
matrix satisfies 

( n + l ) T -  1 

R,( * * *  ,a,, a,+,) = R,( ... ,a,) - $(t)*$(t)'. 

(28) 
t = n T  

Thus, using the matrix inversion formula, 

we can perform, for the ( n  + 1)" symbol duration, the loop: 

0 Set A-'(O) = R;' (  * * e ,  a,) 
0 For i = O;.., T - 1 

~ - ' ( i  + 1) = A - ' ( i )  

1 
- 

1 + g ( n ~  + i ) T A - ' ( i ) S ( n T  + i)* 

- S ( n T +  i)*_s,(nT+ i)' (30) 

and get R ,  '( . . . , a,, a,, ,) = A - I (  T), recursively, without 
having to do any explicit matrix inversion. 

The major complexity factor of the closed-form solution is the 
requirement for an exhaustive search over all possible data 
sequences. However, in the ocean environment where the chan- 
nel may change rapidly, only a few symbols are transmitted 
while the channel is stable. Thus this search may be tractable; 
ironically, the same aspects of the problem that make it hard and 
lead to poor error-probability performance, make the closed-form 
solution a valid answer to the equalization problem. 

An alternative to the exhaustive search will be a suboptimal 
tree search. Tree search is used in several noncoherent detection 
problems. Under this procedure we will first fix a small m (but 
m > q )  and calculate the score of (26) for all A" paths, where 
A is the symbol alphabet size of all possible data sequences of 
length m. Then as the tree is extended by another symbol, the 
score is calculated recursively for all the extensions using (27) 
and (28). Now we keep only B paths, where B is defined by the 
computational complexity and available memory. Only these B 
paths are extended later, and we keep at each stage of the tree 
only the best B paths. Clearly, this procedure is suboptimal, but 
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in a good SNR the loss with this procedure is expected to be 
minimal. 

The incorporation of the q symbols from the previous block 
that affect the current block can be done in a fashion similar to 
what was suggested for the multipath model in the previous 
section. Other alternatives can also be considered and are now 
under investigation. We also mention that a modification of the 
algorithm to a nonblock form in which for tracking purposes we 
use a weighted least-squares goal function that weights past 
samples in an exponential manner can be considered. Under this 
modification we get recursive formulas similar to (27) and (28) 
for calculating the goal function, since the weighting is exponen- 
tial. Analysis and experiments with this modified algorithm are 
also under current investigation. 

V. EXPERIMENTAL RESULTS 

A .  The Multipath Model 
We have tested the algorithm described in Section IV-A by 

simulations using modulation and impulse response parameters 
which characterize underwater modems and the Ocean channel. 
Specifically, a common modulation technique is multiple tones 
FSK, (MFSK), which makes the communications more robust to 
underwater phase and fading instability; for example, in an 
experimental modem developed in the Woods Hole Oceano- 
graphic Institution [39] this MFSK modulation is used. The 
frequencies of the signaling pulses are chosen in a way that they 
are orthogonal; i.e., they are A f = 11 T apart, where T is the 
pulse length. In this experimental modem the symbol duration is 
12.5 ms; this pulse width is long enough so that the IS1 effects 
will spread out to only a few past symbols, but it is small enough 
so that the pulse frequencies are far enough apart to allow 
compensation for Doppler shifts. 

We have generated in a simulation an FSK signal with orthog- 
onal signaling, as shown in Fig. l(a), where this signal modu- 
lates 32 b chosen at random. We assume that along this 32 
symbol duration, i.e., with T as defined above, along 409.6 ms 
the channel is fixed. A typical IS1 effect is shown in Fig. l(b), 
where we passed the modulated FSK signal through a multipath 
channel having four paths, whose parameters are 

= 0.4 r2 = 10.8 r3 = 14 r4 = 27.4 
(111 = 1 012= 0.5 013 = 0.35 0 1 ~  = -0.7 

we see that the longest delay is a little longer than a two-pulse 
duration. 

The signals are observed with noise. In Fig. 2(a) and (b) we 
can see the simulated observed signals, where the SNR is 25 dB 
in Fig. 2(a), and 8 dB in Fig. 2(b). The SNR is the post-integra- 
tion signal-to-noise ratio, defined as 

T -  I lT$,(t; a) dt $ ( t ;  a)  dt 
10 log or lolog O 

lJ2 o2 

where T is the symbol duration (either in time or samples). 
The algorithm suggested in Section IV-A has been tested on 

three observed signals. In a specific example in the high SNR 
case, we have observed the following performance: The channel 
parameters' behavior as a function of the iteration index is 
summarized in Fig. 3 ,  where in Fig. 3(a) we see the delay 
estimates, and in Fig. 3(b) the amplitude estimates. The true 
delays and amplitudes are shown in dotted lines. Note that after 
20 iterations we are very close to the true parameters. Since the 
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Fig. 6 .  Bit error, SNR = 8 dB: (a) Number of bit errors. (b) Their 
location. (c) Logarithm of the signal square error as a function of iteration 
index. 
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Fig. 7 .  The cross correlation in each channel of the EM iteration. 

To get more reliable statistics on the performance of the 
suggested equalization procedure, we have run the procedure on 
10oO blocks, where in each block the channel parameters are 
reestimated independently. These experiments have been con- 
ducted for SNR of 5 and 8 dB. The channel in this example was 
composed of two paths: The first path was at a delay of 0.4 ms 
and amplitude 1, and the second at a delay of 28 ms and 
amplitude 0.7. We have compared the following three proce- 
dures: The first is a known channel case in which we assume 
that the channel is given and we just extract the data using the 
Viterbi algorithm. The second procedure is our equalization 
algorithm; and the third is the “no equalization” case, in which 
we just estimate the first path delay. The average bit-error 
percentage for these three procedures were: (i) Known channel 
(MLSE algorithm): l o%,  at 5 dB, 4% at 8 dB; (ii) equalization 
using our algorithm: 20% at 5 dB, 11% at 8 dB; and (iii) no 
equalization (delay estimate): 23% at 5 dB, 14% at 8 dB. 

Thus there is some improvement in this example over the 
no-equalization case. The fact that the MLSE performance is 
superior implies that in our experiments the channel estimate 
was occasionally wrong, probably due to convergence to the 
local maximum of the likelihood function. This issue, and the 

related issue of choosing an initial guess for the algorithm, affect 
the practical implementation of our algorithm and are now under 
investigation. 

B. Closed-Form Solution 

The closed-form solution has been examined on the modula- 
tion technique described above; i.e., FSK modulation. We have 
examined the version that requires an exhaustive search over all 
possible bit sequences. Due to computational constraints we 
have searched only over 11 b; i.e., over 2” possibilities. The 
generated signals are as above. We assume that the length of the 
impulse response is 2.5 symbol durations. The assumed length 
D of the impulse response in samples affects the computational 
complexity, since it defines the size D x D of the matrices to be 
inverted. 

In our experiments at high SNR the true bit sequence has 
always maximized the score, given by (25). To illustrate the 
performance of this method we look on this score as a function 
of the 2048 candidate bit-strings (see Fig. 8). In Fig. 8(a) we see 
the score as a function of the bit sequences given in lexico- 
graphic order and in Fig. 8(b) we have sorted the score accord- 
ing to its values, and thus we can see the “sharpness” of the 
correct solution with respect to the other candidate solutions. 
This sorted score is shown also in Fig. 8(c) for eight different 
transmitted bit-sequences, chosen at random. 

VI. SUMMARY AND CONCLUSIONS 
In this paper we have examined the equalization problem in 

underwater acoustic channels. We have pointed out the unique- 
ness and special difficulties which arise in these channels and the 
inadequacy of applying standard equalization techniques in the 
ocean. These special features have led us to consider joint 
estimation of the channel parameters and information symbols. 
This idea has been studied for other communication channels; 
however, in many of these channels it was ruled out, since the 
rate of information transmission was much higher than the rate 
of channel variations. In these channels, which may include even 
the fading HF channel, it was unnecessary to re-estimate the 
channel very often, especially since the joint estimation may be 
more complicated and less robust than in other techniques; e.g., 
using an adaptive linear equalizer or the MLSE with channel 
parameters that are updated slowly. The Ocean channel is, 
unfortunately, more fluctuating, especially when we compare its 
instability rate to the relative slow symbol rate. 

The solutions we have suggested (i.e., the closed-form solu- 
tion in the unconstrained case and the iterative method based on 
the MLSE and EM algorithms for the parametric case) assume a 
linear channel model which in some observation window is time 
invariant. This observation window must be small, following the 
discussion above. Although this fact limits the possible perfor- 
mance, it may allow relatively complex processing techniques 
for extracting the small number of symbols in the processed 
window. The performance of our suggested method is now 
studied and we examine ways to make our algorithms more 
robust. 

As mentioned above, one possible drawback of our iterative 
algorithm based on the EM and MLSE algorithms is the sensitiv- 
ity to the initial guess of the channel parameters; this sensitivity 
is due to the multimodal structure of the likelihood function and 
the existence of local maxima. This problem, however, is pri- 
marily a result of the modulation method used. Any equalization 
technique will fail to cope with multipath when the modulated 
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lexiographic order; (b) sorted; and (c) eight different experiments, sorted. 
Fig. 8. The closed-form solution, score for each candidate sequence. (a) In 

signal correlation function tends to be periodic. Thus our re- 
search may suggest criteria for choosing modulation waveforms 
that have a better correlation behavior; taking in mind, say, the 
way whales communicate underwater, one such signal may be a 
chirp signal. 

Another research direction we pursue is the study of sequen- 
tial algorithms for joint channel and data estimation. The struc- 
ture of the solution for the closed-form algorithm will be based 
on the properties of the matrices used in the derivation of 
Section IV-B. A sequential version of the suggested iterative 
algorithm will be based on the general structure of the sequential 
EM-type algorithms derived in [ 2 2 ] ,  [40], [41]. Having a se- 
quential algorithm, the equalizer structure is such that it uses an 
initial estimate of the channel and then tracks its variations. This 
may improve the bit error performance for cases where the 
channel is more stable without losing the ability to track the 
channel variations. 

APPENDIX A 
MLSE VIA THE VITERBI ALGORITHM 

The General Bellman Algorithm 
The Viterbi algorithm is a special case of the more general 

dynamic programming approach developed originally by Bell- 
man [42]. The problem solved by this algorithm can be de- 
scribed as follows. 

Consider the directed layered graph composed of N layers, 
such that each layer contains K nodes, and each node in the ith 
layer can be connected only to nodes in the next ( i  + 1)” layer. 
In general, a weight can be associated with each node and each 
edge of this graph. An example of this graph is given in Fig. 9. 
The nodes at the ith layer are sometimes called the possible 
states at time i .  Now suppose that we want to find the path in the 
graph that has, say, the minimal weight. The weight of a path is 
by definition the sum of the weights associated with the nodes 
and edges along the path. The general exhaustive search ap- 

proach would require passing over all K N  paths; i.e., the 
complexity of the search is exponential. 

Bellman’s dynamic programming approach is based on the 
following observation. Suppose we know that the optimal path 
will pass through the state j E { 1, - * * K }  at time i. Clearly, the 
accumulated weight of this path up to time i must be smaller 
than that of any other path passing through that state j at time i .  
Otherwise the optimal path would include the part of this other 
path. Thus at each time i we only have to find the K paths from 
the beginning to time i ending in each of the states, whose 
accumulated weight is minimal. These K paths can be found 
recursively. Suppose we have the K optimal paths up to time i .  
When we go to the next time, i + 1, we only extend these 
optimal paths (in general there are K 2  possible extensions), and 
for each state at time i + 1 we find the new optimal path. When 
we reach the final time N ,  we have the K paths, each ending at 
a different state such that the weight of each path is the minimal 
out of all the paths ending at the same state. We can now search 
over these K paths to find the minimal path through the layered 
graph, which is the solution to our problem. This algorithm is 
recursive and its complexity is linear in N. 

The Viterbi Algorithm -Application to MLSE 
The application of Bellman’s algorithm to decoding convolu- 

tional codes was originally termed the “Viterbi algorithm,” and 
it is described in detail in [43]. In this algorithm the time index 
represents the data symbol index. The state at each time i is 
composed of all possible A4+’ values of the symbols 
a;,  a,- I ,  . . , ai -q ,  where q is the constraints length, in the 
convolutional codes terminology, and the length of the impulse 
response for our equalization purposes. 

Now as we go to time i + 1 each state can lead to one of A 
states, depending on the values of a,+, and, vice versa, each 
new state can be generated from one of A previous states, as 
shown in Fig. 9. Thus at time i + 1, we find for each state the 
minimum out of the A paths passing through its state at time i. 

The only distinction between our implementation and any 
other implementation of the Viterbi algorithm is the weight 
associated with the nodes and edges. For our equalization pur- 
poses, we associate weights only to nodes. Specifically, for the 
state defined by a,, * * ,  ai-q at time i ,  the weight given 
by 

where 

D 
3 ( t ; g ) * h ( t )  = h ( 7 ) C s p ( t - k T - 7 ; a k ) d 7  (A2) 

J O  k 

and since s J t )  is different from zero only at [0, TI and q 
= 1 D / T ]  , this convolution, calculated for the time period 
( i  - l )T 5 t < iT, depends only on symbols . * ,  a,.  The 
total score for each path is E,W,( j ) ;  i.e., the sum of partial 
weights above, which is also: 

NT 

I r ( t )  - S ( t ; g ) * h ( t ) I 2 d t  (A3 1 
where _a is the entire data sequence, and its minimization 
provides the MLSE. 

The MLSE can be extracted only after processing the entire 
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(b) 
Fig. 9. Graphs of Bellman's and Viterbi's algorithm. (a) General state 
diagram-layered graph. (b) State diagram for the Viterbi algorithm (binary 
case). 

observation signal. Then when we reach the final time. the 
optimal path is available and we can reconstruct, backwards, the 
data sequence. In practical implementation of the algorithm the 
data is recovered in blocks. In our algorithm, where we also 
estimate the channel, block processing enters in a natural way. 

We also note that while calculating the score of the optimal 
path, we calculate the difference r ( t )  - h( t )*s( t ;  _a) needed 
later for the channel estimation part of the algorithm. This 
motivated the minor variation from Forney 's original presenta- 
tion [16], in which the Viterbi algorithm operates on the suffi- 
cient statistics, extracted at the symbol rate, as discussed in 
Section 111-B. Regarding this point, we emphasize again that this 
statistic is not sufficient for our case where the channel is also 
estimated, and if we want to use the original form of Forney's 
algorithm the statistics should have be extracted again for every 
new estimate of the channel; thus we may as well use the 
weights as given in (AI) above. 

APPENDIX B 
THE EM ALGORITHM 

In our channel equalization algorithm the EM algorithm is 
applied to the estimation of the channel parameters in each 
iteration. The EM algorithm will treat the estimate of the data 
sequence 8 as fixed, *and update the estimate of the channel 
parameters to yield e(""). This appendix will start with a 
description of the generic EM algorithm, and then describe its 
application to the multipath channel-estimation problem. As 
noted in Section IV-A, during each iteration of the equalization 
algorithm only one iteration of the generic EM algorithm is 
made. 
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The Generic EM A Igorithm 
The EM algorithm is an iterative procedure suggested origi- 

nally in [21], which at each step of its iteration updates its 
estimate of the desired parameters in such a way as to increase 
the log-likelihood function based upon the observed data y .  The 
algorithm is motivated by the observation that there may be a 
data set, called the "complete" data set, denoted x, with which 
it would be easier to determine an ML estimate of the parame- 
ters of interest than it is with the actual observation data. The 
"complete" data _x is related to the observed data by the 
non-invertible transformation y = H( _x) and thus contains more 
information on the parameters than y .  The principle of the 
algorithm is that given_the observed data and an estimate of the 
parameters of interest e ;  one can estimate the sufficient statistics 
_x by its conditional expectation and thus to have the conditional 
expectation, given y and e'"), of the log-likelihood of the 
"complete" data (th; E step). Then ?ne can make an updated 
estimate of the parameters of interest e( "+ ' )  by maximizing this 
estimate of the log-likelihood of the "complete" data (the M 
step). It can be shown that this procedure guarantees that the 
log-likelihoqp function baszd on the observed data will be 
greater for e("+') than for e(")  (see, for example, [38, pp. 477 
and 4781). Given a new estimate of the parameters of interest, a 
new set of sufficient statistics of the "complete" data is esti- 
mated and the procedure iterates until convergence. This proce- 
dure can be summed up as: 

1) Make an initial estimate of the parameters of interest (e^(')) 
and set n = 0. 

2 )  E Step: Estimate the sufficient statisti$s of the complete 
data, using the observed data, y ,  and e("). Substitute it in 
the expression for the log-likel?hood of the complete data 
to get its conditi:nal expectation. 

3) M Step: Solve e("+') = arg maxeE{log AX; e> I 2, 4'")). 
4) Let n = n + 1 and go to step 2. Iterate until convergence. 

Not: that the term to be maximized in step 2 is denoted by 
U@, 8'"') in [38]. If the choice of _x is made intelligently, the 
maximization of U@, 8'")) will be much easier to perform than 
the explicit maximization of the log-likelihood function based on 
the observed data U ( @ ) .  The disadvantage of this approach to 
ML estimation is that the algorithm, as with any other ''hill 
climbing" algorithm, is not guaranteed to converge to the true 
ML estimate of the parameters of interest, but only to converge 
to an estimate which is a stationary point of 4"(0). 

Multipath Estimation with the EM Algorithm 
Let the observed signal be: 

D 

where { ~ k ,  a k }  are the delays and amplitudes associated with 
the paths, s ( t )  is some deterministic known signal, and n ( t )  is a 
sample function of a white Gaussian noise process. In our case, 
the known signal will be the modulated signal Z ( t ;  g).  With this 
signal model, the log-likelihood function of the observed signal 
is 

f 
U(!?) = - J I Y ( t )  - 5 ap( t  - 

i =  I 
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where e = [71,...,7D,al,...,a,]T is the parameter vector, 
and E ,  y are vectors that represent the signals y ( t )  and s ( t ) ,  
sampld-finely enough (e.g., at their Nyquist rate). The maxi- 
mization of this function is a coupled multiparameter optimiza- 
tion problem with 2 p  parameters. In1381, x is defined in such a 
way that the maximization of U @ ,  e( ” ) )  becomes p decoupled 
optimization problems each with two parameters. This “com- 
plete” data is the set of p signals _x( t )  = [ x, (  t ) ,  . . . , x,(t)]‘ 
which are independent observations of the signal that is received 
via each of the p propagation paths, each contaminated by white 
Gaussian noise; i.e., 

X k (  t )  = CYkS( t - Tk) + nk( t ) .  033 ) 
Given the current estimates of the channel parameters e^(”), 

the conditional expectation of the log-likelihood of the complete 
data is given by 

i = l  \ J t  I 

D 

i=  1 

where the estimate of the complete data, in the vector notation, 
is 

and pi$”) is the estimate of the noise in the ith propagation 
path. E ( ” )  is the difference between the received signal and 
predicted received signal based upon the current channel param- 
eter estimate and is given by 

P 
- A(”) = y - _s(e^j”’). 

- i = l  

The betas are arbitrary non-negative scalars chosen such that 
Cf=’=IPi = 1; they represent the ratio U ~ ~ / U ~  between the vari- 
ance of the noise in the ith path to the variance of the total noise. 
Similar formulas can be written for the continuous time-signal 
notation. 

The maximization of (EM) can be seen to be p decoupled 
matched filtering problems where the estimated signal for the ith 
propagation path is passed through a matched filter to estimate 
the attenuation and delay for that path. Therefore to find the set 
of attenuations and delays to maximize U ( @ ,  I ( ” ) ) ,  we simply 
have to find the delays which independently maximize the output 
of each of the matched filters and then calculate the associated 
attenuation. This maximization procedure guarantees that 
U(e^(””) - 7 -  8”)) > U(@”) 9 -  &“)), and so by the properties of the 
EM algorithm, Y( i ( ”+ ’ ) )  > Y(l(“));  i.e., the log-likelihood 
function based on the observed data is increased in each iteration 
until convergence. 

We recall that in our equalization algorithm, after one step 
through this EM algorithm, the new estimate of the channel 
parameters is fed back to the Viterbi algorithm that finds the 
MLSE to re-estimate the transmitted data. 
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